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Introduction

Adult humans — and nearly all mature macroscopic animals — are
equipped with cognitive abilities that enable themtointeract with the
physical environment. Whether or not this knowledge directly encodes
thelaws of physical mechanics, it must be sufficiently aligned with how
the world works to enable the organism to accomplish its goals. For
instance, without an untutored ‘cognitive mechanics’, humans could
not predict what surfaces will support their weight, whether objects
placedin particular locales will stay there on their own or what actions
will remove or create physical obstacles. The complexity of these prob-
lems has been highlighted by decades of robotics and artificial intel-
ligence research that seeks to induce mechanical understanding in
artificial agents'™>.

By cognitive mechanics, we mean something distinct from ‘intui-
tive physics’, a term commonly used to describe people’s intuitive
knowledge that underlies their understanding of and interaction with
the physical world**. Cognitive mechanics is both broader and more
narrow than intuitive physics. Cognitive mechanics is broader in that
itincludes notjust untutored intuitions but also beliefs about physics
that derive from education (‘tutored’). For instance, in asking how
people think about collisions between rigid bodies, we are equally
interested ininfants playing with balls, pool sharks setting up complex
billiards shots and college students diagramming collisions using
Newton’s equations. All of these examples are cognition applied to
mechanics and therefore within scope. Note that this definition also
includes what is sometimes called ‘tacit physics’, which underlies the

ability to catch balls, navigate obstacles and otherwise interact with
the physical world (as opposed to explicit or verbalized knowledge).
Cogpnitive mechanicsis narrower thanintuitive physicsin thatitencom-
passes only classical mechanics, notall of physics. In practice, the bulk
ofintuitive physics research has focused on classical mechanics, so this
distinction might seem like splitting hairs. Nonetheless, we have found
that the term intuitive physics is opaque to experts in physics educa-
tion, where ‘physics’ includes other topics such as electromagnetism
and general relativity.

Much of the vast body of work on cognitive mechanics draws inspi-
ration from a spate of studies from the late 1950s through to the early
1980s that seemed to reveal deep confusions about mechanics on
the part of children, lay adults and even physicists®™*. For example,
when asked to judge the forces acting on a cannonball fired in the air,
laypeople and even students with a year of undergraduate physics
classreported that the cannonball will continue upwards aslong as the
upward forceimparted by the firing (believed to exist in the upward tra-
jectory)is greater than the downward force of gravity (Fig. 1a). In fact,
according to Newtonian mechanics, once the cannonball has been set
inmotion, the only force acting onitis the downward force of gravity.

From this common origin of foundational studies, several inde-
pendent literatures have emerged that in the past quarter of a cen-
tury rarely if ever cross-cite each other. Cognitive psychologists and
artificial intelligence researchers focus on characterizing tacit and
explicit mechanics knowledge in adults (and machines) outside an
education context**"”, whereas developmental psychologists focus
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A golf ball driven down a fairway is observed to travel through the air
with a trajectory (flight path) similar to that in the depiction below.

Which of the following force(s) is(are) acting on the golf ball
during its entire flight?

1. The force of gravity
2. The force of the ‘hit’
3. The force of air resistance

(A)1only (D)1and 3
(B)1and 2 (E)2and 3
(C)1,2and 3

D
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Fig.1|Examples of cognitive mechanics problems and
common misconceptions. a, In considering the forces
acting on a cannonball, many people endorse an account
inwhich total force is always in the same direction as
motion (upper panel), roughly consistent with the
impetus theory. By contrast, the correct answer is to
endorse the Newtonian theory (lower panel), in which
thereisnoacceleration without a force causing it and
therefore adownwards force (gravity) is operating on
the cannonball throughoutits flight (time 1and time 2).
b, Conceptinventories, typically resembling multiple-
choice classroom exams, probe basic concepts and
thereby conceptual knowledge. An example problem
involves asking what forces are acting on a hit golfball.
Many participants incorrectly report that the force of
impact remains in effect throughout the ball’s flight*”.
¢, Intrajectory tasks, participants are asked to draw or
judge the expected trajectories of objects, such as balls
rolled through a curved tube or aball swunginacircular
motiononastringand then released. Acommon mistake
is an expectation for the circular motion to continue
(black dashed lines) even after the ball leaves the tube
(top) orisreleased (bottom), whereas the correct path
is straight (red dashed lines)®.d, In explanation tasks,
participants provide free-response explanations of
their thought processes. Here, participants are asked to
explain the forces acting onastone and oftenincorrectly
respond that no force is acting on the stone, whereas
both gravity and the ground are imparting (equal but
opposite) force”. Although the two questions here are
normatively identical, participants often vary in their
answers (reviewed elsewhere®). Part b adapted with
permission from ref. 207, AIP Publishing.

This stone is on the
ground. Is there a
force on the stone?
Why or why not?

This stone is stable
on a hill and would
not easily fall down.
Is there a force on
the stone? Why or
why not?
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Table 1| Properties of three contemporary literatures in cognitive mechanics

Education literature

Developmental psychology literature

Cognitive science literature

Literature-specific questions Why are adults’ and children’s cognitive

mechanics systematically erroneous?
How can physics instruction be designed
to dispel error or misconception?

What do infants know about the
physical world?

How do infants and children acquire
veridical cognitive mechanics?

Under what conditions does adult
cognitive mechanics fail?

What algorithms and neural processes
underlie cognitive mechanics?

Framework theory®*
Knowledge in pieces theory

Theoretical perspectives
32,97

Core knowledge theory®*'*®

Theory theory?**®

Rule assessment theories'****

Video game engine in the head theory™
Heuristics and biases theories***¢
Information integration theory"”

Advanced physics students
Naive physics students
Physics experts

Primary participant populations

Infants and young children

Adults who are not physics experts

Common methods Classroom observation Preferential looking paradigm Drawing tasks
Standardized exams Dishabituation paradigm Perceptual judgements
Balance beams, balance scales and Prediction tasks
block stacks Action tasks
Prediction tasks
Strengths External validity Experimental manipulation Experimental manipulation

Ecological validity
Large-sample studies
Frequent replication
Longitudinal data

Diverse measures
Computational modelling

Diverse measures

on development of tacit (and, to a lesser extent, explicit) cognitive
mechanics in early childhood" . Similar to developmental psycholo-
gists, education researchers study learning — but primarily explicit,
verbalized knowledge of mechanics** . These researchers often have
anadded interest in whether and how children’s cognitive mechanics
informs their learning of the scientific discipline of physics and how
cognitive mechanics might be leveraged in pedagogy?**°*'. As a mne-
monic and for simplicity, we refer to these three literatures as the
contemporary cognitive science, developmental and education litera-
tures, to reflect the outlets in which the bulk of their output has been
published. However, these are not natural kinds with rigid boundaries
in their questions, methods or researcher affiliations. For instance,
there are members of the ‘education’ literature who are interested in
development and members of the ‘cognitive science’ literature who
have primary appointments in schools of education. Because a goal
ofthis Reviewisto collapse the boundaries between these intellectual
communities, any imprecision in our grouping should soon become
moot. Prominent reviews published in the past decade*'>171923:273234
illustrate the degree to which the literatures have become distinct.
Although these reviews cite many of the same foundational studies
from the past century, their discussions of the past 25 years are much
more restricted. An exception to this pattern is a 2021 review of the
cognitive science literature that acknowledges the contemporary
developmental literature but declares most of it out of scope”’.
Surprisingly, despite their common twentieth century origins
and shared domain, these three literatures have also reached very
different conclusions about the empirical phenomena in need of
explanation. As a result, the theoretical debates in one literature
frequently make no sense in the context of the others. For instance,
education researchers describe striking errors in cognitive mechan-
ics made by both laypeople and even professional physicists and
a protracted struggle that individuals go through in (only partly)
correcting their physical reasoning®?*?7?%32, The theoretical work

inthis literature is focused on explaining why humans find cognitive
physics so difficult and how humans eventually achieve accurate
understanding, to the extent they ever do***?%?%32353¢_ By contrast,
cognitive science research on adult cognitive mechanics has found
thatadultreasoningis often accurate™'****and theoretical debates
focus on explaining why it is not always accurate*'*7***3-4¢_Notably,
although the scope of the cognitive science literature is broader than
the education literature —itincludes tacit reasoning in perception and
motor control —itincludes extensive studies of the same kinds of tasks
studied in the education literature, such as explicit reasoning about
pendulums or projectiles®***. Thus far, the cognitive science literature
has had little to say about learning, and the most successful theory
(the ‘video game engine in the head’; discussed subsequently) does
not easily admit of alearning theory: the most straightforward predic-
tionis thateveninfants have aroughly veridical cognitive mechanics.
By contrast, the developmental literature largely takes at face value
that infants have a non-veridical cognitive mechanics but acquire an
essentially veridical understanding of classical mechanics by middle
childhood, with the research focus being on characterizing how that
happens'®"*, Unfortunately, the differences between these literatures
are not easy to reconcile. All three literatures are impressive collec-
tions of rigorous, replicable, cumulative and systematicinvestigation
by generations of scientists.

Inthis Review, we provide acomprehensive discussion of cognitive
mechanics across these literatures this century (for reviews covering
only one of the three literatures, see refs. 4,15,17,19,23,33,34). We first
review each literature (Table 1), systematically highlighting the differ-
ences across them and addressing concerns that contributors to one
literature might have about the others. We then sketch one possible
reconciliation: that cognitive mechanicsinvolves a cluster of cognitive
mechanisms that are differentially invoked for different tasks. We con-
clude with suggestions for future work to reconcile the literatures and
test this hypothesis.
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The education literature

What we refer to as the contemporary education literature is a body
of interlocking work focused on students’ struggles to understand
physical mechanics. Systematic errors (‘misconceptions’) such as
those reported for the cannonball scenario described earlier (Fig. 1a)
have been documented in hundreds of studies. These misconceptions
arise in the reasoning of advanced physics students and even faculty
members>*®, Furthermore, these findings are reliable enough across
individuals to have been collected in standardized paper-and-pencil
assessments such as the force concept inventory*’, which are used
in both research and educational contexts to characterize physics
understanding®2**-¢ (Fig. 1b).

Beyond conceptinventories, further evidence for non-Newtonian
misconceptions comes from language: linguists have noted that the
semantics of language is decidedly non-Newtonian®’. Although in
Newtonian mechanics it makes no sense to describe one participant
inaneventas being the cause orapplying the force because all actions
aremet by equal and opposite reactions, thisasymmetry is built deep
into the structure of many — possibly all — languages. For instance,
the phrases ‘my hand pushes a box’ and ‘a box pushes my hand’ are
understood as describing different scenarios, whereas according to
the laws of physics, whenever one is true the other must be true, too.
This fact would make sense if people think about mechanics in a
non-Newtonian manner.

Inspired by classical scholars>®””, one early line of theorizing
ascribed this behaviour to people holding incorrect theories that are
notaligned with Newtonian mechanics**®', According to this perspec-
tive, humans understand the world in ways very similar to scientific
theories and these ‘intuitive theories’ can be wrong>**%"%, The key idea
isthatalthough people’s beliefs about mechanics canbe non-veridical,
they are coherent, predictable and explicable. Some researchers have
argued that untutored intuitions about classical mechanics resemble
the medieval impetus theory (that moving objects are kept in motion
by aninternal ‘impetus’ or force, which gradually dissipates)**°. Others
have described these misconceptionsinterms of an earlier precursor
to the impetus theory (that objects move only when acted upon by a
forceand come torest when the force is removed)®’. Such amisconcep-
tion s explicable: many researchers note thatimpetus theory ismore
consistent with day-to-day observations of objects moving through
the world than is Newtonian mechanics* (but see ref. 67, which finds
that the reverse is true for adults reasoning about forces acting on
one’sownbody).Importantly, successfully learning Newtonian theory
in school requires changing one’s beliefs about mechanics; for this
reason, we refer to these accounts as ‘theory-change’ accounts.

Thereachofthe theory-change account within physics education
is demonstrated by the large literature that has grown up around the
aforementioned concept inventories, which are designed to capture
misconceptions* #5688 These assessments are widely accepted
in undergraduate physics education as a valid measure of cognitive
mechanics (or at least the aspects relevant to undergraduate-level
physics) and are used to assess changes in student understand-
ing across the semester®, evaluate education reforms?, compare
pedagogical approaches®?**7>’’7 and compare instructors®.

Over time, however, evidence accumulated that suggests
amore complex picture than envisioned in the twentieth century
theory-change accounts. For example, numerous studies revealed
that both children and adults give different answers to questions that
are identical from the perspective of impetus theory and Newtonian
theory*161832348788 Eor example, in a study in which undergraduate

58,59

students were asked to predict the trajectory of amoving object, 28%
of the students succeeded in drawing the trajectory for water exiting
acurved hosebut failed whento draw the trajectory for aball exiting a
curved tube® (Fig. 1c). Similar evidence® "' led researchers to believe
that a single individual can simultaneously hold true and false con-
ceptions regarding essentially the same mechanical phenomenon®
(for related work embedded in the contemporary developmental
psychology literature, see also ref. 93). Several theories have emerged
toexplain this variability. Framework theory keeps some aspects of the
theory-change accountbutargues that children’s untutored cognitive
mechanics constitutes something less than a coherent theory®*. Rather,
thebeliefs underlying cognitive mechanics are initially organized into
frameworks — skeletal, incomplete conceptual systems. Misconcep-
tionsarise as studentstry tointerpret what they learninschoolinlight
of their pre-existing frameworks, which are often incompatible*®*.
Even if students eventually acquire the normative scientific theory, it
does notreplace but coexists with the untutored frameworks.

Although framework theory asserts that (untutored) cognitive
mechanicsis fairly coherent but not entirely theory-like, other theories
assert that cognitive mechanics consists of fragmented knowledge
elements® . For example, the knowledge in pieces theory argues
that cognitive mechanics is internally inconsistent and fragmented,
consisting of many potentially useful knowledge elements: an ‘ecology’
of narrow, semi-independent beliefs, named ‘p-prims’ (‘phenomeno-
logical primitives’)*>®%%" P-prims are abstractions of familiar events
and sensorimotor experiences. For example, children might notice that
objects usually stop moving unless something keeps them moving and
adopt a p-prim that encodes this belief. When reasoning about a can-
nonballlaunched from a cannon, activating this p-primwould give rise
to the impetus theory-like belief that an upward force is operating on
the cannonball throughout its upward trajectory®. Successfully learn-
ingtoapply Newtonian theory involves notjustacquiring the necessary
p-prims (often prior to any formal physics education) but also finding
theright onestoapply the right way in the right contexts?*>*°. Conse-
quently, immature cognitive mechanics is highly context-sensitive,
and explanations offered by students will depend in subtle ways on
which particular knowledge elements happen to be triggered in par-
ticular situations. Forinstance, according to the dynamic system theory
(anelaboration ofknowledge in pieces), students’ conceptions emerge
dynamically from the interactions of conceptual resources (that is,
smaller bits of knowledge or intuition students have)*?%*2¢19°_ Thus,
conceptions at a particular point in time and applied to a particular
problem mightdisplay something of the coherence of atheory, whereas
conceptions over time and across situations are not necessarily stable
or consistent, as they are shaped by the dynamic interplay of contextual
factors and the activation of different conceptual resources.

Another line of work similarly distinguishes between having knowl-
edge and successfully deploying it. Inspired by the heuristics-and-
biases literature that explores how people use mental shortcuts
(heuristics) that are useful but sometimes result in systematic errors
orbiasesinjudgementand decision-making'”, these researchers argue
that untutored cognitive mechanics consists of a set of probabilisti-
cally correct heuristics that must be suppressed to use school-derived
knowledge of Newtonian physics'®>'%. Inconsistencies in reasoning
over time canresult fromthe fact that the heuristics — like p-prims — do
not themselves form a coherent system.

Even work on concept inventories — which were inspired by the
twentieth century misconceptionaccount — hasincreasingly suggested
that cognitive physicsis fragmented rather than consisting of coherent
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theories. In particular, factor analysis has been used in conjunction
withtheinventories to decompose student struggles, oftenrevealing
five or more factors®>**>7"%2, Although it is often the case that one of
these factors explains much more of the variance than others and some
of the factors are scientifically uninteresting (for instance, two of the
factors inref. 55 correspond to a preference to respond ‘A’ or ‘C’ on a
multiple-choiceinventory), overall the effectis to paint amore complex
picture than a transition from an incorrect impetus-like theory to a
normatively correct Newtonian one. Indeed, some analyses identify
multiple factors that are related to impetus-like reasoning but are
dissociable from one another®, suggesting that impetus-consistent
errors do not all have a single cause. Conversely, there is increasing
evidence that a major impediment to success on the concept inven-
toriesisunderstanding Newton'’s third law specifically, rather than all
three laws or their interactions®>®., Overall, it is not yet clear exactly
what sort of theory would be supported by the factor analysis work —
interpreting factor analyses is complex and comparison across studies
is difficult — but this discussion illustrates one more way in which the
contemporary education literature has moved away from accounts on
which cognitive mechanics consists of coherent theories and learning
involves replacing one theory wholesale with another.

In summary, the contemporary education literature has been
primarily concerned with explaining why learning to successfully
solve classical mechanics problems in schoolis difficult and slow and
apparently only imperfectly even among professional physicists. Theo-
retical work is further driven by a desire to explain what appears to be
inconsistent and even incoherent behaviour on the part of students,
laypeople and experts alike.

The developmental literature

Theliterature that we refer to asthe contemporary developmental liter-
ature (primarily published in developmental psychology journalsin the
past 25 years) grew out of many of the same foundational studies that
seeded the education literature®”*>. However, although contemporary
workinthe education literature tries to account for why adults struggle
to comprehend Newtonian mechanics even after formal instruction,
contemporary workin the developmental literature tries to account for
anincompatible set of observations that people’s untutored cognitive
mechanics becomes roughly Newtonian by middle childhood without
any dedicated instruction. Thisinconsistency between theliteratures
persistsin partbecause contemporary papersinthetwo literatures do
notcite one another.

The developmental literature has probed children’s knowledge
of many mechanics phenomena, including motion on an inclined
plane, collision events, lifting objects, balance and support!81%108-123,
Although thiswork hasinvariably shown that children eventually behave
in ways consistent with knowledge of Newtonian mechanics (such as
correctlyidentifying whether astack of blocksis stable or will collapse),
italso reveals systematic errors on the part of younger children.

Children’s understanding of balance and support relationships
among objects has received the most comprehensive scrutiny, in
part because of the puzzling developmental trajectories uncovered.
Inparticular, researchers have developed three different tasks for prob-
ing children’s understanding of the mechanical principle of torque:
the balance beam task, the balance scale task and the block stack task
(Fig.2). Allthree tasksinvolve determining whether one object placed
on another object will balance and differ in the nature of the objects:
asymmetric blocks balanced on afulcrum (balance beams), levers with
weights placed on a fulcrum (balance scales) or children’s toy blocks

placed on other toy blocks (block stacks). For all three tasks, the age
at which children succeed varies wildly: around 1 year old for block
stacks'"""'8, 6-7 years old for balance beams’ and 14 years old for
balance scales''* (but see refs. 115,116). For all three tasks, early work
suggested aseries of developmental stages that children go through on
their way to success, with each stage characterized by different patterns
of response. However, the stages described for each task are distinct.
For instance, for the balance beam task, at the earliest stage children
seem to believe (incorrectly) that ablock will balance at its geometric
centre’ (Fig.2a). No suchstage has been described for balance scales''*
(Fig. 2b), and for block stacks it is one of the last stages'*"""'® (Fig. 2c).

Thediscrepanciesin the results of these tasks do not seem suscep-
tible to simple explanations, such as differences in methods. Although
block stack studies use passive measures such as eye-tracking, whereas
balance scales tasks involve overt predictions and balance beams
involve overtly acting on the physical world, this difference does not
seem to determine performance. For instance, young children (age
3-6years) performed worse thaninfants in block stacks inboth overt
tasks and eye-tracking"®""*°, Furthermore, alarge sample (n=1,587) of
childrenacross awide age range performed differently on two superfi-
cially different versions of the same balance scales task'*'. Thus, meth-
odological differences might not be sufficient to explain the distinct
development trajectories revealed across studies.

Although early studies of cognitive mechanics in children were
initiallyembeddedinthe theory-change account describedinthe pre-
vious section’, thisaccount proved untenable. For instance, theinitial
andintermediate developmental stages described for balance beams,
balance scales and block stacks™*"*"""%122 gre better described as rules
or heuristics (‘blocks balance at their geometric centre’ or ‘the side with
more weightsfalls’ or ‘if any part of an objectis supported frombelow,
itdoesnotfall’) thanrich, coherent theories such asimpetus theory or
Newtoniantheory.Inany case, theinitial evidence for distinct, clearly
defined developmental stages has not always held up well under fur-
ther investigation. For instance, large-scale data-driven analyses of
children’sbehaviour onthe balance scales task failed to reveal asimple
ordered transition from rule to rule over development, suggesting
instead mixed strategies within individual children that are not easily
characterized™'** (for a more sceptical interpretation, see ref. 125).

Perhaps for these reasons, developmental researchers — such
as education researchers — have increasingly explored alternatives
to theory-change accounts. For instance, some developmentalists
argue that infants’ representations of mechanics are impoverished
early in development but go through refinement and elaboration
with experience (the exact details of these theories vary, particularly
withrespect to the learning process)®* """, Although these theories
are similar in some respects to the framework theory, they posit that
children’s cognitive mechanics approaches the veridical theory much
earlier in development — indeed one explicitly argues that children
acquire Newtonian theory* — and without explicit instruction. Other
researchers have argued that the behavioural transitions observedin
theliterature are more gradual, emergent phenomena consistent with
connectionist learning'”’.

Yet other researchers have explored the possibility that humans
have two cognitive mechanics systems, which work differently and
are differentially applied in different circumstances, although the
theories differ in the details’®*'*. For example, one group of researchers
has suggested that depending on the task or even scenario, cognitive
mechanics differentially recruits tacit knowledge and explicit, socio-
culturally influenced beliefs derived from media and other sources;
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Fig.2|Developmental timelines for children’s understanding of torque.

a, Inthe balance beam task’, children must place abeam so it will balance on
the fulcrum. Children younger than 6 years of age generally balance both
asymmetrical (top row) and symmetrical (bottom row) blocks using a system
of trialand error and end up correctly balancing both blocks (‘no theory’).
Around age 6, children begin to balance all blocks using the geometric centre
ofablock, regardless of whether the block is symmetric or asymmetric (‘centre
theory’). Around age 7 or 8, children begin to use the centre of mass as the
balance point, for both symmetrical and asymmetrical blocks (‘mass theory’).
b, Inbalance scales tasks, children must predict whether the scale will balance
onits fulcrum. The typically observed developmental trajectory is depicted'*'*
(but see refs. 115,116 for somewhat different timing). By 4-5 years old, children

canrecognize that the scale will tip towards the side with more weight. By 8 years
old, children recognize that if weights are equal, the scale will tip towards the side
where the weights are farthest from the fulcrum. By sometime in adolescence,
they recognize that the scale will tip towards the side with more torque.

¢, Inblock stack tasks'”"182%¢ 3-month-old infants expect objects that are at
least partly supported from below or the side will not fall until 5 months, when
only lower surface support (of any amount) will prevent falling. By 6.5 months,
infants expect stability only when >50% of the lower surface is supported. By

8 months, infants do not expect an object to fall if <50% of the lower surface is
supported as long as the lower surface centre is supported, and at 13 months
infants’ expectations match the predictions of Newtonian mechanics. Part ¢
adapted with permission fromrefs. 209,210, Elsevier and ref. 211, The MIT Press.

whether the individual answers correctly depend on which system
prevails and whether it supports the correct answer'”. A computational
model of performance on the balance scales task splits up cognitive
mechanics differently, modelling cognitive mechanics as a strategic
tradeoff between ‘intuitive’ (connectionist) reasoning and application
ofthe normative torque rule; developmental changesin performance
are explained by learning-related changes to both intuitive reasoning
and strategic tradeoff'?s, We return to this idea of multiple cognitive
mechanics systems in the next two sections.

In summary, much like the contemporary education literature,
the contemporary developmental literature has largely abandoned
the theory-change accounts of the previous century in favour of a
more fragmented picture of cognitive mechanics. However, it differsin
thatitis generally agreed — and the data seem to show — that children
eventually converge onsomething close to (or identical to) Newtonian
mechanics without requiring explicit instruction. As a consequence,
the debates and the theories proposed look quite different from those
ofthe contemporary education literature.

The cognitive science literature
We refer to the third literature we review as the cognitive science lit-
erature due to its prevalence in cognitive psychology and artificial

intelligence publications. Whereas the education and development
literatures are focused on learning and development, the cognitive
science literature focuses on mature adults. There is essentially no
cross-citation between the contemporary cognitive science literature
and the contemporary education literature and only scattered cross-
citation with the contemporary developmental literature (compare
the citations in refs. 15,17,19,33,126,130). For instance, a 2023 review
of the cognitive science literature® includes only one paragraph on
the contemporary developmental literature.

The cognitive science literature has become increasingly
embroiled in a debate about whether untutored cognitive mechan-
ics is ever not Newtonian (reviewed elsewhere*''¢; for prominent
earlier work, see refs. 90,131). Although there are certainly plenty
of researchers who argue that adult cognitive mechanics is not
always Newtonian'*****>13213 the existence of the debate demon-
strates the distance between the contemporary cognitive science
literature and both the contemporary education literature (whereitis
agreed that adult cognitive mechanics — especially untutored cogni-
tive mechanics — is rarely if ever Newtonian) and the contemporary
developmental literature (where the opposite is concluded).

The cognitive science literature is replete with studies that pre-
sent adults with the same kinds of mechanics questions that reliably
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elicited misconceptionsin the foundational twentieth century studies
but obtain responses consistent with Newtonian mechanics (reviewed
elsewhere*”) (foramore sceptical take on how Newtonian adult cogni-
tivemechanicsis, seeref.33). Itis tempting to suggest that this outcome
isbecause the tasks used in the cognitive science literature are arguably
more intuitive and naturalistic. For example, rather than ask adults
to diagram the trajectory of a ball released from a pendulum from
a static line drawing — something adults struggle with — one study
presented participants with realistic videos and asked them to posi-
tion a virtual barrel so that the released ball will land in it, something
they did quite accurately*. Whether all classic misconception results
disappear when more natural tasks are used is not yet known, and it is
not clear whether the key factor is the naturalness of the task or some
other difference, such as the degree to which the task relies on explicit
reasoning4,15*17,33,39,45'

In any case, there is general agreement in the cognitive science
literature that adult judgements of mechanics are at least sometimes
wrong even in highly naturalistic settings. However, there is disa-
greement as to whether this pattern actually reflects non-Newtonian
reasoning. Indeed, anumber of studies have shown that people might
answer classical mechanics questionsincorrectly even if their cognitive
mechanicsimplements Newtonian mechanics*****#434137 Byilding
ontheories that view mental representations asimage-like”**'*, these
researchers argue that cognitive mechanicsinvolves a high-level archi-
tecture thatinteractively simulates the physics of real-world scenesin
away that approximates the Newtonian mechanics'>*® (Fig. 3). These
simulations can be used to predict what will happen in the future as
well as to evaluate different hypotheses about what caused current
state of affairs. This theory is frequently referred to as the video game
engine in the head theory'*°, reflecting the fact that computational
implementations of the theory are built using Newtonian simulators
designed for video games. The theory hasbeensupported by avariety
of behavioural and neural measures'>*?%40411417144 'perhaps surpris-
ingly, computational modelling shows that even with the ability to
conduct veridical Newtonian calculations, performance on common
tasks still shows characteristic errors. One source of error is lack of

- 4

Fig.3| A simulation-based approach to action planning. a, An example of
simulation used toinformaction. When attempting to build a stable block
tower, simulations might be used to decide whether to add an additional block.
Each simulation s slightly different due to perceptual uncertainty, uncertainty
about where exactly the new block will be placed, and perhaps due to stochastic
noise in the simulation. In this case, the tower collapses in 75% of simulations

omniscience******34135 which, for instance, results inboth the model
and humansto be susceptible to ‘physicsillusions’: reliably expecting
certain block towers to fall even though the towers are in fact stable®
(Fig. 4). These illusions arise in cases in which slight perturbations of
the exact positions of the blocks would result in an unstable tower.
Because humans cannot perceive the exact configuration of blocks
with perfect precision, most of their simulations will involve unstable
configurations, leadingthemto infer that the tower will fall. Similarly,
perceptual biases and noise seem to explain adults’ tendency to judge
animations of non-Newtonian collisions between rigid bodies (such as
billiard balls) as plausible®.

Asecond reason acognitive physics based in Newtonian mechan-
ics would still produce errors is that perfect simulation requires
implausible levels of computational power****3_Rigorously apply-
ing Newton'’s laws is often intractable and even professional physicists
oftentake shortcutsin calculations, hence the classic physics problem:
‘Estimate the gravitational attraction between two cows standing
10feetapart. Assumethey are perfect spheres’. Video game engines and
othersimulators similarly make use of numerous shortcuts and approx-
imations to make computation of Newtonian mechanics tractable'®.
Building on a long tradition of research that argues that cognition is
resource-rational*¢, researchers working in the video game engine
in the head tradition have proposed that similar approximations are
involved in cognitive mechanics®. For instance, people seem to simplify
complex objects when predicting how they willinteract —imprecisions
thatare often harmless but canlead to predictable mistakes'*. Amore
complex example of resource-rational cognition withina video game
engineinthe head accountinvolves partial simulation'. When decid-
ing how to strike a billiard ball to achieve a particular trajectory, sim-
ulating the entire universe would be both intractable and overkill:
the physics of most of the world and often most of the billiard table
and its contents can be safely ignored because they have no impact
on the outcome. However, these partial simulations can give rise to
what appear to be non-Newtonian judgements'”. For instance, in
the ‘physical conjunction fallacy™ adults who are asked whether a
particular event will happen (such as a projectile falling in a hole)

b

and the individual concludes it is a risky manoeuvre and elects to do something
else. b, An example of simulation used to make predictions. When considering
whether aball shot from a cannon will land in a barrel, simulations are again used
to determine likely outcomes. In this case, the simulation results are also mixed
and the individual is not confident about what will happen.
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Fig. 4 | Physicalillusions. This rock stack appears to be unstable but is actually
very precisely balanced. The illusion comes from uncertainty about shape, mass
and location’®. Credit: Robert Taylor/Alamy Stock Photo.

give lower probabilities than adults who are asked whether both that
eventand another event willhappen (such as the projectile bouncing
offanobstacle and thenfallinginthe hole): alogical impossibility that
would not happenif participants were faithfully simulating the entire
physical environment. However, the physical conjunction fallacy
occurs precisely in cases in which the first event is only likely when
the second also happens (the projectile only falls in the hole if it first
bounces off the obstacle)'”. In these cases, participants who neglect
toinclude aspects of the scenario necessary for the second event (the
obstacle) will judge the probability of the first event (hole-landing) to
be negligible. Note that participants who are explicitly asked about
the conjunction (thatis, will the ball bounce off the obstacle and land
inthe hole) must necessarily include aspects of the scenario relevant
tothesecond event (the obstacle) and will judge the probability to be
higher. A computational model of partial simulation within the video
gameengine in the head framework not only accounted for the physi-
cal conjunction fallacy but also produced novel predictions that were
then confirmedin humans. (For anapplication of partial simulationto
spatial navigation, seeref. 147.)

In short, non-normative behaviour does not necessarily mean a
non-normative cognitive mechanics. Nonetheless, it remains contro-
versial whether resource-rational, noisy probabilistic simulation as
exemplified by the video game engine in the head theory canaccount
for all departures from normative Newtonian judgements. Some
researchers working within the contemporary cognitive science lit-
erature have argued that some or all errors are better explained by a
heuristics-and-biases theory similar to those proposed in the education
literature**>**'3_In this case, heuristics are understood to be simple
rules that apply in very specific circumstances, such as ‘taller things
are more likely to fall’ or ‘heavier objects fall faster’. Such heuristics
do not fit together into a coherent package, and they typically do not
referto unobservable properties (forinstance, they refer to observable
features such as weight and height but not unobservable ones such as
gravity or mass).

Other researchers argue for something more akin to the frame-
work theory proposed in the education literature, in which cogni-
tive mechanics consists of a set of non-normative beliefs that form

something less than a coherent theory*?*'*%, Researchers sometimes
refer to these incorrect beliefs as ‘heuristics’, but it is useful to distin-
guishthem fromtheroterulesbased on observable features described
in the previous paragraph. Instead, in these accounts, cognitive
mechanics makes use of unobservable latent constructs — a hallmark
offormaltheoriesthatis absentin prototypical heuristics. Forinstance,
the proposed ‘impetus heuristic***® refers to an unobservable feature
impetus. Another account, based on information integration theory,
uses rules based on the same unobservable features of Newtonian
mechanics such as gravity, but the rules are mutually inconsistent and
therefore cognitive mechanicslacks the coherence of atheorysuchas
those invoked in the theory-change account”.

Teasing apart the theories described in this section is compli-
cated by the fact that mostare not formal theories that canbe directly
implemented in math, making their predictions unclear (or at least
debatable). This limitationisillustrated in the discussion of the video
game engine in the head account: whereas earlier work had assumed
thatif cognitive mechanics implements Newtonian mechanics, human
behaviour would be error free, computational modelling shows that
this is not the case, that certain types of errors are in fact predicted
on such an account. Even the more formalized accounts such as the
video game engine in the head** and informationintegration theory”
are frameworks rather than fully worked-out theories. For instance,
although every empirical test of the video game engine in the head
account involves a fully implemented computational model, imple-
menting amodel for each new task and domain often raises substantial
technical challenges; whether animplementationis possible or exactly
what its predictions will be is difficult to establish in advance. Thus,
itis not currently clear whether the theory’s impressive successes in
accounting for humanbehaviour so far will fully generalize. Nonethe-
less, the video game engine inthe head accountis being rapidly fleshed
out>#BHBeIITIINIISL other theories will need to be similarly elaborated
inorder to determine whether they present viable alternatives.

The contemporary cognitive science literature also presents chal-
lenges to the contemporary developmental literature, whichis aimed
atexplaining how children acquire aNewtonian cognitive mechanics.
Even if the video game engine in the head theory is correct, it sug-
gests a very different end state than seems to be considered in the
developmental literature. If one of the other theories, in which adult
cognitive mechanics is non-Newtonian heuristics or misconception
or error theories, is correct, the contemporary developmental lit-
erature is even more misguided. Either way, it is unclear for any of the
contemporary cognitive science theories whether there are learning
theories that recapitulate the developmental trajectories described
in the contemporary developmental literature and culminate in the
cognitive mechanics proposed by the cognitive science theory. This
state of affairsis mostly an absence of evidence: the cognitive science
literature has had very little to say about learning or development. For
sometheories, such as the heuristics theories, standard approaches to
modelling thelearning of heuristics could be tested and compared with
human data. The case of the video game engine in the head theory is
more complex, because there are no well-developed learning theories
that can be straightforwardly applied, although the contemporary
developmentalliterature itself suggests some starting points®. There
is one early but promising attempt to incorporate learning into the
video game engine in the head theory, butitis not yet clear whether it
can capture the attested developmental patterns™°.

In summary, the contemporary cognitive science literature
acceptsthatadults’ untutored cognitive mechanicsis usually accurate
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but admits of systematicerrors. The central debate is whether the sys-
tematic errors are due to cognitive mechanics being anon-normative
approximation of Newtonianmechanics (such as heuristics) or areflec-
tion of aresource-rational approach to computation (as suggested by
the video game engine in the head account).

Cognitive mechanics across literatures

The three literatures we have reviewed here have reached different
conclusions about the nature of cognitive mechanics. None is easily
dismissed: all three bodies of literature have striking strengths relative
to the others (as well as limitations), which we describe first. Then,
we pick up on atheme from all three literatures: cognitive mechanics
mightinvolve multiple dissociable mechanisms that are differentially
invoked in diﬁ.‘erent COntextslé,l7,23,42,50,51,55,78*82,94,101*107,128,129' Although
the proposals in the literature are too simplistic (they were designed
toaccountforasimpler pattern of results than what we have reviewed
earlier), the approach is promising and should be developed further.

Strengths and weaknesses by literature

One might be tempted to reconcile the threeliteratures by dismissing
two of them. However, determining which two to dismiss would be
difficult, as all three have compelling strengths as well as weaknesses.

Theevidenceinthe contemporary education literature for perva-
sive misconceptions is backed by studies with thousands of subjects,
including longitudinal data ideal for studying learning. The educa-
tion literature also has the advantage of clear ecological validity in
that most of the studies are directly measuring students’ struggles
in physics class using the same kinds of assessments used in physics
class. There has been considerable attention paid to the psychomet-
ric properties of the concept inventories that constitute the primary
measure for many studies®**""7>"79-8¢ In the light of current concerns
about replicability*"* it is also notable that many findings have been
repeatedly replicated using the same measures®®”* ",

These compelling strengths make it difficult to dismiss the find-
ings. However, features of the contemporary education literature
that give rise to its strengths also make the findings less than fully
conclusive. Most obviously, it relies primarily on two basic methods:
paper-and-pencil classroom exams and qualitative analysis of explicit,
verbalized reasoning and therefore is constrained by the limitations of
those methods. For instance, performance on a concept inventory is
necessarily modulated by (potentially learned) test-taking abilities™ '
and also by design of the test (many of the commonly used concept
inventories are indifferently formatted and involve interpreting line
drawings).

By contrast, a strength of the contemporary developmental lit-
erature and especially the contemporary cognitive science literature
is the use of a much wider array of methods, including eye-tracking,
motor tasks, perceptual judgements and neural measurements. This
diversity of methods provides a more robust picture of the phenom-
enathan afewtasks, which helped researchersin thisliterature assess
external validity and pin down exactly which findings generalize across
methods'**%¢° This diversity is particularly true of the cognitive sci-
ence literature. The developmental and cognitive science literatures
have also prioritized high-quality, easy-to-understand tasks, decreas-
ingthe probability thaterrors onthe part of the participantsreflect con-
fusion about the task. Both literatures use computational modelling,
enabling more precise tests of theory than has been seen in the edu-
cation literature. The cognitive science literature in particular boasts
computational models of unusual sophistication, enabling evaluation

and comparison of theories to a degree of precision and detail that
would be otherwise impossible (see, for instance, the back-and-forth
about the physical conjunction fallacy*"**'),

These considerations make it difficult to dismiss either literature
in favour of the education literature, although again their results are
not beyond question. These two literatures have made less use of
replication than the education literature: some basic findings in the
developmental literature involving balance scale and balance beam
tasks have been replicated, but not with the frequency of major edu-
cation literature findings, nor across as many populations. Likewise,
sample sizes are generally smallapart from a handful of larger balance
scaletasksinthe developmental literature, and none of these reaches
the massive scale of the larger education literature studies.

Intotal, we find no convincing argument to favour the results from
one literature over the others. Rather, it is likely that the differences
in findings are meaningful and something to be explained. Clearly,
differences in methods explain some of the variance in results, both
withinand acrossliteratures. Unfortunately, what those differences are
is unclear. For instance, although performance sometimes improves
when more easily-understood and ecologically valid tasks are used,
it does not always*7383414344.941327134 (reyiewed elsewhere®). More-
over, although no doubt people underperformtheir actual knowledge
in some studies because the task is not ecologically valid, is hard to
understand or is otherwise poorly designed, suggesting that poor
performance is always due to poorly designed measures implicitly
posits that physics students actually understand Newtonian mechan-
ics prior to instruction. This situation would imply that generations
of instructors (and education researchers) have failed to notice this
understanding due to confusing class discussions and poorly written
exams, whichwould be astriking phenomenoninneed of its own expla-
nation, given that psychologists (who, it should be emphasized, are
not professional physics educators) apparently have no such difficulty
determining that this knowledge is present. Similarly, whereas the fact
that humans struggle in physics class yet seamlessly move about the
physical environment might suggest a distinction betweeninaccurate
conscious reasoning and veridical tacit knowledge'®"’, this hypothesis
fails to make sense of findings that participants sometimes struggle
withimplicitor tacit tasks, succeed at conscious reasoning or have dif-
ferential success on what seem to be similar tasks>"##48108.116.119-121,160-163
(reviewed elsewhere®). A related proposal is that accuracy tends to
be higher on motor, perceptual and mental imagery tasks than on
reasoning tasks, but there are many unexplained exceptions to this
generalization”. Such data are similarly problematic for theories in
which people trade off using quick-but-sometimes-inaccurate heu-
ristics with more accurate but slower Newtonian reasoning**1°>1%,
Thus, the divergent findings across and within literatures defy simple
explanations and do not fully align with any existing proposals.

Interlocking mechanisms for cognitive mechanics
Perhaps, the aforementioned proposals are not all wrong but rather
all right. As reviewed earlier, researchers in each literature have sug-
gested that the patterns of success and failure at mechanics tasks
reflect humans reasoning about different problemsin different ways;
forinstance, deploying veridical knowledge to some problems but not
to others®***19219728 However, because of the disconnect between the
literatures, these theories have been aimed at a much less complex
pattern of results than what we review earlier.

Perhaps, there are not two but many mechanisms that vary in
the degree to which they are tacit versus explicit; are differentially
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invoked in planning, perception and prediction; and develop on dif-
ferent timescales. This proposalisless far-fetched thanit might seem:
there are other domains where the brain has multiple ways of solving
the same problem that are differentially involved in different tasks
and have different characteristics. For example, in visual perception,
there are over six separate mechanisms for depth perception (such
as stereopsis, motion parallax and visual occlusion) that vary in their
application (stereopsis is critical for motor control but visual occlu-
sionhas agreater effect on conscious perception of depth)'®*. Another
example is long-term memory: episodic, semantic and procedural
memory work differently, vary in their conscious accessibility and
are used for different purposes'®. Other examples might include
decision-making'®®.

Multiple mechanisms mightbe necessary because formally equiva-
lent algorithms (which can solve all and only the same problems) can
vary considerably in which problems they work well for. For instance,
computer programming languages can in principle all do the same
things, butin practice there are many programming languages because
each has different strengths. For instance, javascript is asynchronous:
instead of running one line of code at a time, it can try running all of
them at the same time. This simultaneity is useful for displaying web-
sites but would be disastrous for a physics simulator, in which the
temporal order of eventsis critical. Natural languages also vary in how
easily certain concepts are expressed. If we consider not just formally
equivalentalgorithmsfor atask but also good-enough approximations,
there areeven more options. Thus, it might be common or required for
the brain to flexibly use different computational mechanisms for the
same computational problems®’.

Similarly, there are many algorithms for obtaining at least approxi-
mate solutions to questions about Newtonian mechanics —algorithms
that vary in their advantages, disadvantages and use-cases. Some
questions can be quickly answered through closed-form solution of a
few equations, whereas others are easier to solve through simulation.
Neural networks can approximate the results of physics simulations
in a fraction of the time'®. However, neural networks work best for
familiar situations and can produce nonsensical results in less famil-
iar ones™”"° (humans are likewise more accurate at solving classical
mechanics problems embedded in familiar scenarios”). Similarly,
computation-reducing simplifications (like treating a cow as a perfect
sphere of uniformmass) and heuristics might work well enoughinsome
situations (determining gravitational attraction between acow and the
sun) butbe counterproductivein others (milking acow). Thislist does
not exhaust the options for (approximate) Newtonian reasoning but
is sufficient to demonstrate there are many options that work better
for different purposes. Note that by virtue of the fact that the world is
Newtonian, any sufficiently well-specified theory of cognitive mechan-
icsinvolves some algorithm (or set of algorithms) for (approximating)
Newtonian mechanics. Given that different algorithms are better suited
to different purposes, cognitive mechanics might involve many of
them. Performance on any particular task need not involve only one
but could involve a mixture of multiple mechanisms.

Of course, each cognitive mechanics mechanism need not beitself
entirely unitary. For instance, there is good reason to suppose they
might each combine real-time processing with stored, rote responses.
The proliferation of computational models of cognition in the twenti-
eth century”"""” has driven home the computational difficulty of most
problems solved by human brains. A great deal of current thought is
directed at not just understanding how brains do what they do, but
how they doit fast enough to be useful*"'7*%*, One approach to rapid

calculation is to use classifiers to constrain the hypothesis space’®*;
for instance, learning from experience to recognize likely points of
failure on ablock tower and then running simulations that target just
those parts. Constraining the problem space simplifies the problem,
making it faster and easier to solve, but at the risk of overlooking some-
thing important. Other approaches to rapid calculation, like using
neural networks to approximate the results of simulations, similarly
trade off speed with accuracy™. If humans use stored, learned knowl-
edge to speed up calculation, then two individuals who both have
veridical Newtonian simulations at their disposal might, nonetheless,
give different answers because they have different experiences and
different stored knowledge. Different answers could also occur from
oneindividual at different times (with different stored knowledge) or
in different contexts (which might trigger different aspects of stored
knowledge to different degrees).

Patterns of behaviour for cognitive mechanics might alsobe com-
plicated because of complex interactions with other cognitive systems.
Mechanisms for cognitive mechanics need to interact with each other
and also with input and output systems. As discussed in the cognitive
science literature, some misconceptions might arise from impreci-
sionsin perception rather than in cognitive mechanics®***'*, Itis also
possible that errors arise inaction: one might understand the physics
of balance beams but have difficulty placing the beam in accordance
with that knowledge.

In summary, the complexity of the findings across the three
literatures and along a priori considerations about computational
complexity and efficiency suggests that cognitive mechanics will not
be well described by one or two simple cognitive mechanisms con-
sidered inisolation from the rest of the brain. It remains unclear what
exactly the ultimate theory of cognitive mechanics should look like.
Researchers are only just scratching the surface of two-mechanism
theories™****192197128 mych less theories with more mechanisms. In the
final section, we make some suggestions for next steps.

Summary and future directions

Inthe past three decades, research on cognitive mechanics has splin-
teredinto threelargely unconnected literatures withincommensurate
results, concerns and theories. This situationis unlikely to be resolved
by overturning the findings of one or another literature, but rather by
developing a theory of cognitive mechanics that involves multiple
interlocking mechanisms with different affordances and pitfalls and
that is differentially active across situations. Cognitive mechanics
is complex because solving real-world mechanics problems is com-
putationally complex. But critically, solving mechanics problems is
complex in well-understood ways and researchers have an increas-
ingly sophisticated understanding of the affordances of different
computational approaches. There are several lines of research that
are likely to advance understanding, including determining when
cognitive mechanics is accurate, decomposing performance and
formalizing models.

One key challenge is that it is not clear under what conditions
human cognitive mechanics is accurate and under what conditions it
is not. Partly, this answer is unclear because it has not received much
systematic investigation. A few studies have carefully compared slight
variations in method****321¢° byt these cover only a small portion
of alarge, confusing body of work. For instance, one study reports
that adults are strikingly accurate at understanding falling bodies™,
whereas another study concludes the opposite™”. However, the stud-
ies differed in stimuli (stacks of blocks presented in 3D animations®®
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versus rods presented in a mix of story problems, line drawings and
physical objects'), the type and number of judgements (individual
judgements about each stimuli** versus forced-choice comparisons'?)
and the specific question (whether the stacks would fall, andif so, which
direction they would fall and how far away the blocks would land*®
versus which rod would be easier to balance on one’s fingertip, and if
therod did fall, how fast it would fall**). The analyses of these studies
arealsonot commensurate: the first study used the video game engine
inthe head theory and found that human performance was similar to
an ‘ideal observer’ thatisaccurate within the constraints of perceptual
uncertainty and processing constraints®®, whereas the second found
that human performance was below that of an ‘omniscient observer’
with perfect knowledge of the stimuli (including exact mass distribu-
tions and positions), the circumstances (without wind or large vibra-
tions) and Newtonian mechanics'. We suspect that the participants
in the second study'? probably also underperformed relative to the
ideal observer, but we do not know. Systematically determining the
determinants of accurate versus inaccurate behaviour is key to deter-
mining the nature of cognitive mechanics. Extending the systematic
comparisons of studies (as done inrefs. 44,132,160) is a large project.
Although we think it is unlikely, it is possible that systematic study-
by-study comparison will result in an uncomplicated story that does
not require the interlocking systems account. Regardless, the point
is that at the moment, we do not know exactly what theories need to
explainand clarifying the phenomenais necessary for further progress.

Even if there are not multiple interlocking systems of cognitive
mechanics, performance on any given task is a product of multiple
underlying cognitive systems such as attention and working memory.
This assumptionisimplicitinany suggestion that differencesin results
across studies are due to differences in tasks and extends well beyond
the systems often invoked. For instance, performance on any task
will rely on attention and cognitive control, working memory and
meta-cognitive strategies. In one intriguing example of the relevance
of meta-cognitive strategies, people with congenital limb differences
thoughtlonger thantypically developingindividuals before attempting
to solve computerized mechanics puzzles but took fewer attempts to
correctly solve them'®,

Research into interlocking mechanisms of cognitive mechanics
could make use of the increasingly powerful statistical methods for
mathematically identifying contributions of different cognitive mecha-
nisms to performance in some tasks. These methods include factor
analysis (for distinguishing latent variables such as reliance on different
mechanisms) and item response theory (for characterizing differences
across stimuli)®**'¥’, These methods have been applied to concept
inventories in the contemporary century education literature®®7->838¢
and such work needs to be extended to cover the range of methods
used in the literature. Use of more advanced Bayesian versions of fac-
tor analysis™**"*” might be particularly informative. Such work might
provide some clarity on systematic differences in results across stimuli
and tasks.

Similarly, cognitive science and developmental psychology
researchersare highly experienced at teasing apartinterlocking mecha-
nisms through targeted experiments, neuroscientific methods and
investigation of developmental trajectories'*>'°*?°"°* Building on
comparison studies***"?'1321€0_these methods need to be systemati-
cally applied to the range of findings and questions in the cognitive
mechanics literatures. Anemerging optionderives fromrapid advances
in cognitive neuroscience. Tasks thatinvoke different cognitive mecha-
nisms oughttoinvolve different brain systems. Comparing implicated

brain systems might historically have involved comparing functionally
defined regions of interest; advancesin analysis of neuroimaging data
are providing a steadily more nuanced view of neural representation
and processing, enabling tighter constraints on cognitive theories”*',
Indeed, the handful of neuroimaging studies of cognitive mechanics
to date have already provided theoretically fruitful results'>17°-2%°,
We believe that a high-impact next step would be to systematically
compare the neural systems involved in tasks that are known to give
strikingly different behavioural results, to better clarify why.

Finally, researchers should formalize existing informal accounts
to further test their predictions. As described in the review of the
cognitive science literature, one of the great insights of the video
game engine in the head approach was realizing that positing that
cognitive mechanics involves veridical knowledge of Newtonian
mechanics does not mean that humans can predict the physical world
with infinite precision and therefore that they might not respond
or behave in a Newtonian way. Perceptual uncertainty, processing
capacity limitations and other practicalities necessarily distort theo-
retical predictionsinways thatare hard to predict without creating a
mathematical model of the theory™’. Historically, it was intractable
to develop computational models for theories as complex as some of
those developed for cognitive mechanics. However, the sophistication
of computational models has grown with leaps and boundsin the past
several decades, enabling theories that are increasingly complex and
precise””’ 7. Many of the theories that have not yet been formalized
now likely can be, and the experience with the video game engine in
the head account should make one wonder what unexpected insights
might arise.

One question worth exploring is how limitations on computa-
tional resources influences theories that are not based on Newtonian
simulation. For instance, one theory posits that cognitive mechanics
involves augmenting perception with good-enoughinferences based
on a variety of sources, including experience with one’s own motor
planning™>?°2%2, As with the video game engine in the head theory,
asophisticated computational model is needed to know what such a
theory predicts. The knowledge in pieces theory***%? is similarly
complex, anditis likely thatany computational version will make pre-
dictions thatare not obvious. Certainly,implementing acomputational
model will require spelling out points that are currently unspecified
(such astheset of p-prims and how they are selected for a specifictask),
but anecdotally the experience of many computational modellers is
that during the process of specifying a theory in a model they really
come to understand the theory. Anadditional advantage of comparing
computational models is that it opens the door for ‘optimal experi-
mental design’: choosing stimuli and experiments that maximally
distinguish between models?*2%,

In conclusion, the study of cognitive mechanics has produced a
dizzyingarray of findings and theories and asmall but growing number
of computational models. In the short term, collecting more data is
less important than making better use of the data already collected,
developing accounts that make sense of the full range of results. New
data-collection efforts would be most profitableif focused on answer-
ing questions that will help reconcile the disparate results across and
within literatures. Helpfully, the three literatures provide valuable
methods, techniques and ideas that, in combination, should enable
substantial, rapid progress in determining how people reason about
the physical world.
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